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The analysis of major accidental hazards often requires an assessment of the dispersion of
toxic or flammable vapours in the atmosphere. Whilst there are many models which deal with
dispersion in unobstructed terrain, most realistic releases are likely to occur in the vicinity of
buildings. In order to assess the effects of buildings on gas dispersion, the HSE commissioned
WS Atkins to investigate such situations using computational fluid dynamics (CFD) techniques.
Phase 1 of the study reviewed the current situation with regard to both CFD modelling and
appropriate validation data. In undertaking this review, some simple models for wake
concentration were identified, and it was concluded that it would be useful to determine the
extent to which simpler models could be used.

The second phase of this work then involved an in-depth study of the application of CFD
modelling to dispersion around buildings. This included validation against wind tunnel and full
scale data sets, as well as application to a typical industrial site. This has been reported fully by
Hall et al."**®

In parallel, further work on simple modelling was undertaken and is presented in this repon. It
summarises the simple methods currently employed in major hazard analysis for assessing
building wake effects, and goes on to identify some modifications and models which are not
currently used, but which appear to be improvements, based on the available data and CFD
modelling results. The study is focussed upon particular applications of wake modelling,
primarily relating to non-normal wind incidence and the effects of high density on the wake
structure and hence on gas concentration.

This report and the work it describes were funded by the Health and Safety Executive. Its
contents, including any opinions and/or conclusions expressed, are those of the authors alone
and do not necessarily reflect HSE policy.

HSE BOOKS



© Crown copyright 1997
Applications for reproduction should be made to HMSO
- First published 1997

ISBN 0 7176 1320 8

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted
in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise) without the prior
written permission of the copyright owner.



CONTENTS

1. INTRODUCTION

l.i Backgrbund
1.2  Types of Model Reviewed

2. EFFECTS OF WIND ANGLE ON WAKE DISPERSION

2.1  Existing Simple Models for Normal Wind Incidence
2.2  Models for Non-Normal Wind Incidence

2.3  Assessment of Accuracy for Non-Normal Incidence
2.4  Improvements to Model

3. DENSE GAS RELEASES IN BUILDING WAKES

3.1  Background to Brighton's Model
3.2  Review of Model Constants

3.3  Influence of Buoyancy Parameter
3.4  Applications of Brighton's Model

4. CONCLUSIONS
4.1  Errors in the Application of Simple Modelling

4.2  Results from CFD Study
4.3  Potential Applications of Simple Modelling

REFERENCES
APPENDIX 1 The Wake Shape Parameter, p
APPENDIX 2 Brighton's Two Layer Model

WSA/RSUS000/013/2

Page

lo WV I A PY W oad

o0

12
14

16
16
16
17

19



1.0 INTRODUCTION
1.1  Background

Accidental releases of hazardous materials may affect surrounding areas if toxic or
flammable vapours disperse in the atmosphere. Calculation of such dispersion, for
inclusion within risk assessments, is straightforward for uniform unobstructed flat
terrain. However, practical releases may be affected by the presence of adjacent
buildings, generally resulting in enhanced dispersion.

The effects of buildings on dispersion have been reviewed in Phase 1 of this study
(Lines et al®®¥). Phase 2 has included a substantial effort in the application and
validation of CFD modelling to the problem (Hall’*®?®), but has also investigated the
extent to which simple models could be used to calculate the dispersion of releases in
building wakes. This investigation, reported herein, supplements the CED work being
undertaken, in that the simple modelling often provides a clearer understanding of the
parameters which are of most interest when assessing the results of CFD modelling.
Conversely, the CFD modelling also provides additional insights into the areas where
simple models are weak and could be improved, and may be used to enable constants
to be evaluated.

The Phase 1 study gave a detailed review of simple models for predicting mean
concentrations in the near-wake region. It focused upon the limitations of current
modelling, and identified the following particular areas as being suitable for further

research:
i) Non-normal wind incidence
i1} Dense gas releases in building wakes

iii) Jet releases in building wakes

Jet releases with significant momentum are less likely than others to be affected by a
building wake, since the initial momentum may be sufficient to take most of the
released materials out of the wake region. Alternatively, if the momentum is directed
towards the ground or towards the building, there will be very rapid mixing due to
impingement, and a fully-mixed wake model will be appropriate. Attention has
therefore been focussed on the first two of these issues, which are discussed in more
detail in the remainder of this report.

Although data is becoming available on the fluctuation of the concentrations in building
wakes (Higson et al"®®), such information is not currently in regular use in risk
assessments. This report therefore deals only with mean concentration predictions, and
is primarily focussed upon the near wake effects, where the relatively strong mixing
within the building wake is the dominant feature.

WSA/RSUS000/013/2 Page 1 Contents



1.2 Types of Model Reviewed

Large buildings may have a significant effect on the dispersion from elevated plumes.
In this case, the enhanced mixing may bring the plume down to ground level more
rapidly, thus increasing ground level concentrations. This feature has been
incorporated within the standard pollution dispersion model ADMS (Hunt et al*™®),
using the methods developed by Apsley®™®, Whilst this work takes full account of the
wake structure, it is only applicable to the modification of passive Gaussian plume
models. Since the main concern in this study is for ground level dense gas releases,
this work was not considered further.

The building wake in a turbulent shear flow is extremely complex, and a brief review
of its structure has already been given in the Phase 1 study (Lines et al?®¥). Hunt®%*
studied a range of wakes, and included quantitative results of velocity and turbulence
profiles in the wakes of cubes and of cylinders. Further discussion of wake structure,
including vortex downwash for non-normal incidence, was given by Hunt &
Robins®™?,  Schofield and Logan"**® also provided some schematic visualisation of
the streamlines within 3D wakes.

The result of all these studies has been to demonstrate the complexity of typical
building wake structures. In order to make some progress with simple 'zone' type
models, as distinct from the complex CFD models used in the companion study
(Hall"®?), it is necessary to make some assumptions about the mixing within the wake.
The most common assumption which is made is that, because of the‘strong mixing, the
concentration is uniform within some specified wake region, This is the basis for the
models discussed in Section 2, and is generally sufficiently accurate for input to a
model for the downwind dispersion. However, the accuracy of such models is difficult
to determine, since the actual variation of concentration within the wake makes
comparison with measurements difficult, unless the concentration field is so extensively
mapped that a realistic average can be calculated.

Alternative assumptions can be made, depending upon the conditions being considered.
For example, dense gases are known to form stratified layers, and this characteristic
can be used to define zones, as in the Brighton"**® model described in Section 3. In
this case, the single well-mixed wake zone is replaced by two layers, each of which
covers the full horizontal area of the wake, but only part of the wake depth. Mass flux
is then allowed into, out of and between these layers, but each layer is assumed to be
at uniform concentration.

WSA/RSUR000/013/2 Page 2 Contents



2.0

2.1

EFFECTS OF WIND ANGLE ON WAKE DISPERSION

This section considers the influence of the angle of wind incidence on the
concentrations within the wake of a building. The discussion concentrates on releases
which occur at low level, as this is the situation most commonly encountered for major
accident hazards. It should be noted, however, that many of the experimental studies
have considered high level releases, such as stack discharges; much of the available
information is therefore appropriate to releases which originate away from the building
(e.g. Thompson®™),

Existing Simple Models for Normal Wind Incidence

Simple models of building wake dispersion have generally been developed for
rectangular buildings where the wind direction is normal to one of the building faces.
One of the most well known of these models is the near wake recirculation model of
Vincent 47 ¥® which assumes that the release is uniformly mixed.throughout the
recirculating building wake. This model, which was recommended by the UK
Atmospheric Dispersion Model Working Group (Jones"”?), gives the concentration
within the recirculating wake as:

1
X, =CUA/Q = B x— 2.1)

where x,, = non-dimensional wake concentration

C = actual concentration within wake (assumed uniform)

U = wind speed

A = cross-sectional area of the building

Q = - release rate

B = _ wake shape factor (typically 0.5)

A, = normalised wake length = L /h

T, = normalised -residence time = UT /h

h = building height

T, = actual residence time

L, = actual wake length

Fackrell and Pearce"® and Fackrell™®® indicated that p should be constant ('of order
1'} over a wide range of building shapes. However, little guidance is available on
how B should be determined; some discussion of its derivation and meaning is given
in Appendix 1. The Fackrell work did present the following formulae for A, and «,:

1.8 (b/h)

A, -
(ImY°3 [1 + 0.24 (B/)) 2.2)
11 /e
2.3
1+ 06 (B/m'? (2.3)
where b = building width
l = building length in wind direction
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For I/h < 0.3, the result for I/h = 0.3 should be used, and similarly, for I/h > 3, the
result for //h = 3 should be used.

In order to predict concentrations at greater downwind distances, a transition is made
at the‘end of the wake region described above. The effective source is simply defined
as an area b, x h at a distance L, downwind of the building, with a total volume flux
of diluted material of Q, at a concentration C. The width of the recirculating wake,
b,, for buildings where b/h > 0.2 is given by: ’

b,-1.15+06h 2.4)

The effective source may then be used as an input to an area source Gaussian plume
model or even a dense gas dispersion model. The parameters b, and h may also be
used to define a virtual source location, so that, if appropriate (ie. no density effects)
a point source Gaussian plume model may be employed. Jones"**® suggests that the
effective release height for the virtual source should be h/3 and that the virtual source
location for the point source Gaussian plume model should be defined by:

o, (x=0) = ki3 (2.5)

o, (x=0) = bf3 | (2.6)

where x is measured from the downwind edge of the building, so that the dispersion
parameters at a distance x from the edge of the building are then obtained from o' (x)
= o(x + x,)and o'(x) = o,(x + x,,), where o, and o, are the dispersion parameters
for a point source. In general, the virtual source locations for the horizontal and
vertical spread are not identical, ie. x,, =X,

z

2.2  Models for Non-Normal Wind Incidence

If a rectangular building is oriented at an oblique angle to the wind, then the flow field
around the building is substantially altered, with enhanced vortices being produced.
This is most significant for high level releases (from an elevation greater than the
building height) as the vortices can lead to material being rapidly brought down to
ground level. The remainder of this section, however, concentrates on releases at a
lower level, within the wake, as most major hazard releases tend to occur at ground
level.

Jones"** notes that less is known about the behaviour of A, and ¢, for non-normal
wind incidence. However, he states that the above relationships (Equations 2.2 and
2.3) may still be used, provided that the effective building dimensions are used, and
L, is measured from the nearest building face mid-point, as illustrated in Figure 2.1.
The width of the recirculating wake is given by Equation 2.4, but, once again,
effective building dimensions should be used for non-normal wind incidence.

Fackrell ** states that Equations 2.2 and 2.3 for the wake residence time and wake

length give agreement with experiments for various building shapes to within ~+ 20%
in most cases, even for those cases with the buildings at 45° to the flow, provided that
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the total width normal to the flow is used for b/h. This conclusion is surprising, as it
is well known that non-normal wind incidence generally sets up strong spiralling vortex
motions in the near wake, which would be expected to lead to greater advection out of
the wake and hence lower residence times and concentrations. One possible
explanation may be that the concentration in a non-normal wake varies from one part
of the wake to another, due to the strong vortex motions. Fackrell's conclusion may
therefore not be generally true throughout the whole wake, but may have been based
upon measurements in a particular region.

2.3 Assessment of Accuracy for Non-Normal Incidence

In view of the accuracy implied by Jones®*™ and Fackrell***®, it is worth examining
the predictions of the above model a little more closely. Figure 2.2 shows the variation
in residence time, wake length and concentration against 8 (the angle between the wind
direction and a line normal to the long building face) for a building shape with
b/h = 3 and /h = 1. Figure 2.3 shows just the variation of normalised concentration
with wind angle for a wider range of building shapes.

These figures illustrate the effect of building orientation over a 180° range, and include
some plan views showing the building orientations. It is noted that the figures give the
non-dimensional wake concentration both as x, = CUA/Q (as given by the simple
wake model described above) and as CUh?*/Q, which is the parameter usualty of most
interest (and which is generally quoted in experimental studies). These two non-
dimensional concentrations are obviously simply related, for any particular building,
but it is important to remember that there may be a significant difference between their
values, particularly for buildings of high aspect ratio (b/h).

The performance of the simple model described above can be assessed against
experimental data, such as that of Hall (in Robins"**?) who describes a series of wind
tunnel experiments using simple block shape buildings of dimensions h x b x h, for
aspect ratios (b/h) in the range from 1 to 25. The passive source was located in the
centre of the rear face, and concentration measurements were made at ground level
along a line parallel to the rear face and h/2 from it. Experiments were undertaken for
angles of incidence in the range 8 = 0° to 45° (with 0° being normal to the long face).
The results of these experiments have been reproduced in Figure 2.4.

Hall's results relate to measurements at specific locations in the wake, rather than the
average assumed in the simple model. The results are seen to be seen to be markedly
different from those obtained using the simple model described above, particularly at
high aspect ratios, thus indicating the inhomogeneity of the wake concentration field.
The simple model predicts a monotonic decrease in normalised concentration (CUR/Q)
with increasing building width (see Figure 2.5), for all values of 6, whereas Hall found
significant increases in concentration as b/h was increased above about 4, especially
for the 8 = 0° case. In fact, for b/h = 10 and 6 = 0°, the simple model predicts a
concentration -which is about a factor of 30 less than that measured by Hall. This
difference is much greater than the probable error suggested by Jones “* and
Fackrell ®*®* based on the simple parameterisation of t, and 4,,, and suggests that the
range of validity for the model needs to be specified more closely.
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For example, it is considered that the model should only be used for b/h < 4, as Hall
showed that wake concentrations may increase significantly for higher aspect ratios (for
any value of 0 in the range 0° to 45°, but especially for 8. = 0°). For higher values
of b/h, the peak concentration in the wake generally increases significantly above that
predicted by the model. Although Fackrell ***® identified some of the changing
characteristics of the wake as b/h increased, it was not indicated that the model
significantly under-predicted concentrations for high b/h.

The main reason for the monotonic decrease in concentration with increasing b/h (as
shown in Figure 2.5) is that the concentration in the simple model is inversely

- proportional to the cross-sectional area of the building. Thompson®*?® presented wind-
tunnel results for a wide range of source conditions near buildings ranging from a cube
(h x h x h} to a wide building (h x 4h x h). He also collated data from other wind
tunnel experiments, and demonstrated that the cross-sectional area, A, was less
appropriate for non-dimensionalising the concentration (see Equation 2.1) than h?, if
the width b exceeds h. This study, together with the data of Hall and others,
demonstrated that the plume does not expand uniformly to fill the wake cavity for these
wide buildings with high values of b/h.

2.4 Improvements to Model

Thompson “**» suggested that the simple mode! described above should only be used
for b/h < 1, and that, for larger building widths, the cross-sectional area (A) should
be replaced by an 'effective area' h’. The effect of implementing this recommendation
into the simple model is shown in Figure 2.6. (Note that the vertical scale in this
figure is linear, compared with the logarithmic scale on Figure 2.5.) Comparison of
these predictions with the data of Hall indicates that this modified simple model is
much more appropriate for high values of b/h, but that it significantly over-predicts the
concentration for 30° < 6 < 45° and 5 < b/h < 20. This apparent over-prediction
may be ascribed partly to the changing vortex structure of the wake with increasing
wind angle. 'The low values obtained by Hall may also be a function of the
measurement location, and may therefore not be truly representative of the average
through the well-mixed wake region.

It is considered that the best approach for refining this type of model to match the data
for a range of building aspect ratios and angles of wind incidence would be to continue
to use the x,, = CUA/Q = Bt /A, model, with 7, and A, as.defined above, but to find
an improved formulation for an effective area 'A' as a function of b/h and 6. The
parameter 'A’ would then represent the effective cross-sectional area of the plume
within the wake It should be noted that the overall building 'width' normal to the
incident wind flow is b cosé + [ sinf, as shown in Figure 2.7. It should be noted that
this differs from the definition of effective width 'b' given by Jones®*®®, as illustrated
in Figure 2.1, and is not the same as the wake width given by Equation 2.4.

In summary, there are the following three possibilities: _

1) Simple model, no allowance for 6
A =bh . 2.7

ii) Simple model, including effect of 8 (see Figure 2.5)
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A = (bcos 8 + [sin 6)h (2.8)

iii)  Modified simple model (see Figure 2.6)

A=(bcosé +Isin®)h forbcos® +/sin® <h
" 2.9
A=h forbcos® + Isin® > h

The data shows that none of the above formulations is adequate for all possible values
of b and 9, and it is considered that a better parameterisation could be developed. It
is possible that the results of parametric studies using CFD modelling could provide
useful data required for an improved model of this type.

It appears that the most important effect of varying the angle of wind incidence is in
the case of wide buildings, where the wake structure changes from being two to three
dimensional as the angle 6 increases (causing a marked decrease in wake concentration
‘due to additional air entrainment)., For low aspect ratio buildings (b/h < 3), wind
direction has relatively little effect on wake concentration, as the wake is three
dimensional for all angles.

It is emphasised that the above conclusion is only appropriate for releases which are
fully entrained in the recirculating building wake. For high level sources, the angle
of wind incidence has a major effect on ground level concentrations close to the
building, as the extent of mixing is determined largely by the vortex motions in the
building wake. For upwind releases, Higson et al'”" have shown that the non-
dimensional wake concentration is strongly dependent upon the width of the incident
plume relative to the width of the building; a narrow plume gives a wide range of
concentrations over the rear face while a broad plume gives a more uniform (and
generally lower) normalised wake concentration.
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3.0

3.1

DENSE GAS RELEASES IN BUILDING WAKES
Background to Brighton's Model

The only simple model that has been proposed to deal with dense gas releases in

. building wakes is that of Brighton “**®, This is a two layer model, and is shown

schematically in Figure 3.1. Concentration and volume flux conservation equations
are solved in order to derive analytical solutions for the concentrations in the upper and
lower layers, and the basic equations are reproduced in Appendix 2. The principal
parameters which determine the wake concentrations are:

3 The non-dimensional volume release rate (Q = Q/UA)
3 The non-dimensional buoyancy parameter (B = g.Q/ U’b)
. The non-dimensional building length and breadth (I/h and b/h)

It should be noted that the ga§ density will only affect the wake concentrations if the
buoyancy parameter is sufficiently large, Britter & McQuaid“*®*® discuss this in some
detail, with particular reference to experimental results for wakes behind a flat square
plate (b=h). The following broad dispersion regimes are noted but discussed in more
detail in Section 3.3:

B>1 Dispérsion unaffected by obstacle .
B> 0.2 Dilution enhanced in immediate lee, but affected little in far field
B < 0.04  Wake concentration can be estimated from passive models.

Hence it appears that there is a relatively narrow range. of values of B for which
Brighton's model would be used, assuming that the above results can be generalised
firstly to buildings with some depth, and secondly to a non-square cross-section for the
incident face. It is therefore assumed in this study that the range 102 < B <1 is of
greatest interest for the application of the model.

This model has not been developed subsequent to Brighton's original study, nor does
it appear to have been used in any detailed dispersion calculations. WS Atkins have
encoded a simplified version of the method into a software tool which uses the model
to determine the dilution due to a single block-like building, given the dimensions and
concentration of an incident dense gas cloud. The existence of the two layers of
Brighton's model has not been specifically investigated in the parallel CFD study,
although the predictions for the industrial site do indicate strong stratification of a
dense cloud, even within the wake of large buildings; the results of the parallel CFD
study are discussed in greater detail in Section 4.2,

In spite of its potentially limited application, it is worth identifying some of the
principal assumptions used in this model, most of which were recognised by Brighton,
who noted that the model could be elaborated as more experimental evidence becomes
available. Some of the main assumptions and points worth noting in the model are:

i) The dimensions of the wake are based on the correlations of Fackrell*,
which were derived from wind tunnel measurements.
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i) Volume fluxes of gas and air are preserved on mixing (i.e. the gas and air are
at the same temperature or have equal molar specific heats).

iii)  The volume flux of air into the lower layer is taken to be zero (F,, = 0).

iv) The volume fluxes between the two layers are taken to be identical,

(Fry = Fy).
v) Brighton gives th(? flux of air into the upper layer iﬁ a simplified form.
vi)  The model uses various constants which need to be determined empirically.
vii) ~ Brighton only considers the case where roof flow reattachment occurs.

viii)  Brighton's example ¢his Figure 4), -whilst correct, could be slightly misleading
if not carefully interpreted. '

Items v) to viii) are considered in more detail in the remainder of this section. Section
3.2 considers items v):vii), since these all affect the model constants in some way.
Section 3.3 considers the influence of the buoyancy parameter, with particular
reference to the interpretation of Brighton's Figure 4, while some comments on the
further development and application of the model are given in Section 3.4.

3.2  Review of Model Constants

The following sub sections consider in more detail points, v, vi and vii identified in
Section 3.1, ie. '

a) Flux of air into upper layer
b) Roof flow reattachment
c) Empirical constants used

E f Air into U I
Brighton gives the flux of air into the upper layer as:

F,u = ¢, (hy/D*? hy with ¢, = 0.5, for l/h, 2 0.3
3.1
F,;, = ¢ hy with ¢, = 0.7, for I/hy; < 0.3

The constants ¢, and ¢,, as given by Brighton, were determined for a 'mean’ building
width. The exact solution, based on Fackrell's correlations, is as follows:

1.8 [1 + 0.6(b/h,)"] '
¢, - for 0.3 < lUh, < 3 (3.2)
11 B [1 + 0.24(b/hDY(B/A Y
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¢, = 03% ¢

c

_ a-03
, =3

c

1

1

for Uk, < 0.3

for Uk, > 3

(3.3)

The table below gives the values of ¢, and c, for various possible values of b/hy,, based
on a range of wake shape parameter (p) values see (Equation 2.1). It should be noted
that little guidance is given on the value of B, which is expected to remain of order 1
(Fackrell and Pearce®®"). Further discussion on the appropriate value of p is given
in Appendix 1, but the values used in the following comparison are expected to cover
the range which may be applicable in practice. (Note that, in each case, ¢, and ¢, are

inversely proportional to p).

Table 3.1 Constants Used to Determine Air Flux into Upper Layer

0.1 1.03 0.52 0.34 1.48 0.74 0.49 0.74 0.37 0.25

0.3 0.61 0.31 0.20 0.88 0.44 0.29 0.44 0.22 0.15

0.5 0.50 0.25 0.17 0.72 0.36 0.24 0.36 0.18 0.12
o1 0.42 0.21 0.14 0.61 0.30 0.20 0.30 0.15 0.10 Jl

2 0.42 0.21 0.14 0.61 0.30 0.20 0.30 0.15 0.10

3 0.45 0.23 0.15 0.65 0.33 0.22 0.33 0.16 0.1

10 0.61 0.30 0.2 0.87 0.44 0.29 0.44 0.22 0.15

From this table, it can be seen that Brighton's choice of ¢, = 0.5 is quite a reasonable
approximation, but it should be noted that it is not appropriate for high or low values
of b/hy, or for values of (B) other than 0.5. Similarly, ¢, = 0.7 is a reasonable choice
for I/h;; < 0.3, with the same provisos. It is noted that Brighton did not consider the
case of //h; > 3, for which a value of ¢, = 0.35 is recommended for typical building

shapes.

Roof Flow Reattachment

Fackrell's formula for 1., as used by Brighton, generally relates to the case where the
flow reattaches on the roof of the building. This may not be the case for some
buildings, and it is typically assumed not to occur if the building length (/) is both less
than about one building height (h) and less than about half the building width (b). i.e.

Re-attachment typically does not occur when both / < hand ! < b/2

Fackrell “** and Robins “*® give a more complete description of the nature of the roof

flow regime, including the effect of ambient turbulence levels (Robins ).

Fackrell suggests that it may sometimes be more appropriate to use Hosker's 497
original formulation for A, for some cases where separation occurs (e.g. when b/h>5).
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It is also noted that Fackrell “**? misquotes Hosker's equation for A, for when the flow
does not reattach, but the correct result is presented below,

[3.7 (thy'? - 2.0] (b/k)
1 « [0.305 (/hY13 - 0.15] (b/h)

A

(3.4)

Brighton validates the two layer model using wind tunnel data for square plates
mounted normal to the flow in a wind tunnel, where roof reattachment is clearly
impossible. However, the use of Fackrell's formula may still be adequate in this case,
since b/h < 5.

In cases where there is re-attachment, Equation (3.4) gives values of 1, which may
differ significantly from the value of 2.08 which Brighton uses. For example, for //h=
1, Equation (3.4) reduces to

1.7/
¥ 1 . 0.155(8/h) (3.5)

which varies from 1.5 at b/h = 1 to values ranging from 4.8 - 6.7 for b/h = 5-10.
Similarly, fixing b/h = 5, Equation (3.4) gives A, = 6.2-4.8 for I/h = 'A2-1.

It should also be noted that the wake correlations which have been developed by a
number of authors and discussed here all relate to cuboid buildings. One of the main
differences when seeking to apply such methods to pitched roof buildings will be the
nature of the roof separation. It is suggested that the cuboid building wake correlation
can still be applied to pitched roof structures, but with the appropriate re-attachment
conditions, as for example discussed by Cook!%?,

In summary, when using Brighton's model, consideration should be given to whether
the roof flow is separated or reattached, and to which formulation for 1, is most
appropriate. It may also be possible to incorporate the variation of A,, with b/h and 1/h,
rather than just retaining a constant value.

Empirical C Used i el

Brighton's model employs a number of empirical constants in order to determine the
concentration and height of the two layers in the wake. Any practical application of
the model therefore requires guidance on appropriate values. The four main empirical
constants that are used by Brighton are:

] e A mixing coefficient (Brighton uses a value ~ 0.017)
L ¢y A mixing coefficient (Brighton uses a value ~ 1)

® ¥, A constant

L4 ¥, A constant

Appendix 2 shows how these constants are used in the specification of volume fluxes.
It is worth noting that one of the main attractions of the model is that the solution for
the concentration in the lower layer (i.e. C, = 1 - «;A,/B), where there is suppression
of mixing due to density stratification, only requires knowledge of one of these
parameters (i.e. «,). However, in general, all four constants are required to allow a
specification of the layer heights and concentrations.
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The constants y, and v, are used to define the volume flux out of the lower layer F, by
the equation: :

F, = (v, ¥,D™h (3.6)

Brighton gives no guidance on the choice of suitable values for v, and y,, although the
results he presents in his Figure 4 can be replicated by using y, = v, = 1.

3.3 Influence of Buoyancy Parameter

Brighton presents, in his Figure 4, a comparison of the results of his model against
some of the small-scale results produced by Britter in the early 1980's. They are
presented as a plot of C, against B, and two theoretical curves (for Q = 0.01 and 0.1)
are included. This figure is reproduced here in Appendix 2, and shows that, above a
value of B of around 0.03-0.04 (corresponding to a Richardson number, as defined in
Appendix 2, of Ri; = 0.017), C, is dependent only on B, whereas, below this value,
C, tends to a constant value which is roughly proportional to Q. This has been
confirmed for the following practical sets of parameters; h=b=5m, and the values of
Q, u and Q shown in Table 3.2.

Q(m%s) 1 1 10 10
u(m/s) 2 5 2 5
Q 0.02 [ 0.008{ 0.2 0.08

Table 3.2 Parameters used for results. of Figure 3.2

The results are shown in Figure 3.2, which confirms those presented by Brighton, in
his Figure 4, for Q=0.01 and 0.1, The upper layer concentration (C,) is not shown,
but, for small B, is around 0.75C,, decreasing as 1/B for B > 0.03 - 0.04.

It should be pointed out that, in this figure, the variation of C; with B is obtained by
keeping Q fixed. Thus, this would apply for fixed release rate and wind conditions,
but varying gas density, and hence g;. In practice, it would be of more interest for a
particular set of release scenarios to fix g/, and vary B by varying Q, and hence Q. In
this case, with the parameters as noted above, but fixing u = 2m/s and varying Q from
around 0.001 to 300m®/s, the results appear as in Figure 3.3.

" The independence of the results on Q for large B is clearly evident, although the
constant value of C, for small B is now replaced by a linear dependence on B ( and
hence on Q). Figure 3.3 also includes the variation of x (= C/Q), which is constant
for small B, but then decays as 1/B for large B.

It is also worth reviewing how this compares with current information on the influence

of the buoyancy parameter. The Britter McQuaid Workbook®*® suggests various
buoyancy regimes, as outlined in Section 3.1 and described in more detail below:
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B < 0.004 Release density has negligible effect on dispersion.

0.004 < B < 0.04 Density stratification is limited to the immediate lee of
the building (CUR*/Q ~ 20 at x/h=1).

B >02 Obstacle has little effect, although plume dilution in the
immediate lee is enhanced.

B>1 Obstacle has no effect on plume growth and dispersion.

Brighton ®** describes experiments for which Britter®®® provides an .excellent
summary of the visual observations and the concentration measurements in the near
field and at the end of the recirculating wake. It should be noted that the above
regimes were based, at least in part, on these observations, and also that Brighton used
them in the development of his model. The experiments showed that:

B ~ 0.0014 Plume is passive in wake and remains passive further
downwind.
B~ 0.05 Mixing throughout wake, but reverts to low-lying

spreading heavy-gas plume further downwind.

B~0.34 Plume confined to a fraction of obstacle height.
Obstacle has little effect.

The results shown in Figures 3.2 and 3.3 are in good agreement with the above -
experimental data. For example, at low values of B (<0.01) in Figures 3.2 and 3.3,
the plume is well mixed throughout the wake, so that the concentrations in the upper
and lower layers are very similar. At values of B above 0.1, density effects are
dominant and the lower layer concentration is much greater than that in the upper
layer. These results indicate that Brighton's model is well suited to modelling these
phenomena. However, his Figure 4 (see Appendix 2) does raise the following points,
which may be worthy of further consideration in any subsequent mode! development:

o In the data included on that figure, there is a clear distinction between
concentrations at x = h and those at x=2h, suggesting that mixing is far from
uniform within the defined 'layers' of the wake region.

. Whilst there is clearly a transition in the variation of C; at around B = 0.03,-
the change in the experimental data is rather less abrupt than the model would
suggest.

. Although the value of C, increases rapidly towards 1 with increasing B, the

thickness of this lower layer can become very small. For example, at B=.035,
h, ~ 0.75Q. For Q=1 and u=2, Q=.02, giving h; =.015, which, for h=5m,
suggests that h, = .075m = 75mm. In practice, therefore, this layer may not
be established, and rather more mixing may be apparent, as noted above.
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3.4

Further consideration of the solution for large B (Ri > Ri;) suggests that, since h; can
be very thin, it may be useful to consider the average concentration (C,=C,h, +C,h,)
as input to a dispersion model. Manipulation of Equations 3.21 and 3.22 from
Appendix 2, using o, A, = 0.036, gives:

c 1-0.036/B  0.05]
- + (3‘7)

-
5 1 ‘BIB B

Xy =

which decreases from 1.42 at B = .036 to 0.53 at B=1.

Applications of Brighton's Model

At this stage, it is probably useful to clarify the calculation steps required in order to
apply Brighton's model to a particular situation, involving, for example, a release of
1 m's (approximately 3 kg/s) of chlorine in the wake of a building which i is 5 m high
and 5 m wide in a 2 m/s wind speed.

1. Calculate non-dimensional release rate Q = Q/UA = 1 /(2x5x 5) = 0.02

2. Calculate g’'; = (p/p-1)g = (2.5-1)9.81 - 15 (taking chlorine density as
2.5 times that of air.)

3. Calculate buoyancy parameter B = ¢’ . Q/U% = 15x 1/ (2°x 5) = 0.375
4, Calculate y = y, + v,B'” = 1.72, (arbitrarily taking y, = f2'= 1)

5. ©  Calculate non-dimensional lower layer height h, = Q/y = 0.02/ 1.72 =
0.012

6. Calculate non-dimensional upper layer height h, = 1 - h, = 0.988
7. Calculate non-dimensional wake length using Fackrell's equation, A, = 2.08
8. Calculate transitional Richardson number Ri;= «,/a,, = 0.017/ 1 = 0.017
The next step is complicated by the fact that the choice of the equations required to
calculate the layer concentrations C; and C,,, depends on whether the Richardson
number Ri = (C - Cy)g’,h/U? is greater or less than Ri;. However, the value of Ri
is not known at this stage of the calculation as it depends on the values of C, and C,.
Thus, a trial and error iterative approach may be necessary, as described below.
9. Assume Ri < Ri; and calculate upper and lower layer concentrations using
Equations 3.19a, b
C. = 0.037 Cy = 0.028 Ri = 0.17

It can be seen that this is in fact incorrect, as Ri > Ri;

WSA/RSUS000/013/2 Page 14 Contents



Therefore, calculate upper and lower layer concentrations using Equations 3.21
and 3.22 for when Ri > Ri;

C, = 0.91 Cy = 0.0027 Ri = 16.9
Since Ri has been shown to be greater than Riy, this is now consistent.

10.  Calculate x, and g, using x = C/Q, 1. = 45 and x, = 0.14

In its present form, the model clearly has to be applied carefully. In particular, the
following points should be noted.

. The concentration within the wake is unlikely to be horizontally homogenous.

. The depth of the lower layer (h,) may be very small. If so, it may be more
appropriate to use the depth-averaged concentration, C, as calculated in
Equation (3.7).

. For a given geometry and material, use of Brighton's Figure 4 may be
misleading when considering which releases are affected by buoyancy. The
plot presented in Figure 3.3 would be more useful in that respect.

In summary, this model may be used to provide an assessment of dense gas releases
in the vicinity of buildings, using the methodology summarised above. However, use
of the model is not straightforward and it may be more appropriate to codify it within
a simple expert system. This would facilitate further validation of the approach with
the results of wind tunnel and CFD modelling.
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4.0

4.1

4.2

CONCLUSIONS
Errors in the Application of Simple Modelling

The use of building wake models in dispersion studies is not extensive at present. The
errors which should be considered will therefore originate from two sources:

a) Errors caused by ignoring building wake effects
b) Errors caused through uncertainties in the use of the models

In the first case, it is clear that the magnitude of any errors will depend upon the
relative size of the release compared with the building dimensions. The greatest errors
will therefore occur when the cloud or plume cross-section is comparable to or less
than that of the buildings.

The discussion in this report has more specifically addressed the second type of error,
and shown how the effective wake width in particular should be chosen with care, and
building orientation effects should also be treated carefully. The magnitude of such
errors can be seen readily by comparing Figures 2.5 and 2.6.

Further errors could be introduced by using a passive dispersion wake model in place
of a dense gas model. This is discussed in Section 3, where the extent of wake
stratification is noted. Likely errors in the use of such models can be assessed by
referring to Figure 3.2, which shows the variation of lower layer concentration with
buoyancy parameter.

Results from CFD study

The parallel CFD study (Hall"*®) censidered a range of test cases for dispersion in
wake regions. Since these were primarily designed to provide validation, they were
generally limited to situations’ for which physical data, usually from wind tunnel
modelling, was available. However, one test case was undertaken which related to a
real site, and considered dense gas dispersion in building wakes with non-normal wind
incidence.

The main building under consideration was of non-standard shape, and was also
embedded in a group of other (generally smaller) buildings. Thus, although non-
normal wind incidence was considered, it is difficult to draw any direct parallels with
the simple modelling presented here. However, the CFD results did demonstrate a
number of features which relate directly to the application of Brighton's model, as
discussed in Section 3, and generally confirm the main assumptions underlying the
model i.e. that the high release density results in wake stratification. In particular, the
following points are noted:

a) The dense gas cloud does not mix fully over the height or width of the leeward
building face. -

b) The stratification persists to a distance of 100m or more from the rear building
face. '
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c) Groups of buildings result in channelling effects which may be significant in
determining the exact 'footprint' of a dense gas cloud.

4.3 Potential Applications of Simple Modelling

Simple models for building wake dispersion are worthy of further consideration, as
they enable rapid assessments to be made of the likely concentrations resulting from
accidental releases. Although the models have generally been validated for simple
cuboid buildings oriented normal to the flow, the models can be applied to more
complex shapes and to non-normal wind incidence, as described in this document.
However, it must be recognised that the models should be used with caution for cases
involving buildings with aspect ratios b/h or //h which differ significantly from unity,
particularly for cases where the angle of wind incidence is not normal to one of the
building faces. This document gives some guidance on the nature of the errors which
may occur when using such simple models, as noted in Section 4.1.

As noted in Section 1.2, the UK ADMS pollution dispersion model has been developed
to include the building wake effects model of Apsley®*®. Since this is geared to the
modification of standard Gaussian plume models, it is not appropriate to the problems
considered in this study. However, a similar development for dense gases released into
building wakes, based upon the models considered in this report, and not restricted to
the framework of a Gaussian plume model, would be appropnate and would fill a gap
in current methodologies.

It is therefore suggested that it would be worthwhile to develop a better formulation for
the effective crosswind area occupied by the plume within the building wake. This
area would be a function of the building dimensions and the angle of wind incidence,
and could be based on existing wmd tunnel data, and on results of appropriate future
CFD runs.

The only simple model for building wake dispersion involving heavier-than-air releases
is that of Brighton, which has been reviewed in some detail. It appears that this model
can be used successfully to predict wake concentrations, and comparison of the results
with those of CFD modelling would be of interest. Several features of Brighton's
model are addressed in some detail in this document, and some brief suggestions for
areas where the model could be modified have been discussed. It is particularly
interesting to note that the kind of accidental releases which would be most
significantly affected by dense gas building wake effects are those which typically
dominate the risks around major hazard plant, such as failures of road tanker
connections. The dispersion of larger dense gas releases is initially dominated by
effects such as gravity driven slumping, rather than building wake effects, whilst
smaller dense gas releases essentially behave in a manner similar to passive releases.
The dispersion of moderate dense gas leaks, which tend to dominate the risk, will,
however, be affected by building wakes.

It has been demonstrated that practical application of a two layer model is not entirely
straightforward, and it would be useful to automate the methodology. This would
enable it to be used more readily to provide the inputs required for standard dense gas
dispersion models. It has also been noted, however, that it needs to be applied with
some care, in order that appropriate conclusions are drawn.
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One approach which could be adopted is to develop an expert system type model, based
on the type of information presented in this report, which would determine the most
appropriate methodology to characterise the wake, and provide an output describing
the various wake parameters, together with the data required to link into a medium to
far field dispersion model. ‘ :

The key inputs would be:

- building dimensions - release location
- building orientation relative to wind - . release density
- wind speed - release rate

and the main outputs would include wake characteristics:
- wake dimensions

- residence time

- wake concentration

and input parameters for gas dispersion models:

- aspect ratio of cloud

- cloud density and concentration

- virtual source location

The system would also need to provide an indication of the range of the uncertainty in
the various output parameters.
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APPENDIX 1

The Wake Shape Parameter, B

The simple model for the wake concentration includes the wake shape parameter, p, which is
the ratio of the volume of the wake to that of the enclosing cuboid. This is derived by
assuming that the volume of the wake behind a building of cross-section b x h is

V. =bhL (Al.1)
where L, = wake length
b, = wake width
h, = wake height

It is generally assumed that h, = h, although this may be an underestimate for cases where the
separated flow on the roof does not re-attach. (See Section 3.2 for a discussion of the
conditions for this to occur). If the flow remains separated, h, = 1.5h seems more appropriate
(Robins™™). For the purposes of the discussion in this Appendix, it is assumed that b, = h.

Relating b, to b by the wake shape parameter, B, then gives
» = bhL/p (Al.2)

If a cuboid wake region is assumed, with the wake width, b, as defined by Equation 2.4, then
it can be shown that:
1

P 1T 0.6 (h/b) (A2.2)

Typical values of B for a range of b/h values are presented in Table Al.1.

b/h 02 |05 1 2 5 10
B 024 043 059 071 [0.82 |0.86

Table Al.1 Variation of wake shape parameter, p

If, however, b, h and L, represent the extremities of the wake, which does not completely fill
this cuboid region, then p would exceed these values. For example, if the wake was of semi-
ellipsoid form, the volume of the ellipsoidal region is V, compared with V, for the enclosing
cuboid:

v, - -’-;- bhl, (Al.4)
vV, - b h L (AL.5)
H Ve 5 19
g =—_— = — =1,
enc v n . (A1.6)
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This suggests that the p values in Table Al.1 could be factored by 1.9 to give the range:
| 0.46 < p < 1.63 | (AL.7)
It should be noted, that the parameter p will effectively also include the ratio h/h,. Whilst this

will be unity for some buildings, it will be around 2/3 for others. This would tend to reduce
values of B, so that

0.31 < p < 1.09 | (A1.8)

In order to cover most realistic eventualities, the values 0.5, 1.0 and 1.5 have therefore been
used as representative in Table 3.1

The discussion above would seem to suggest that B is a function of building width, although
this is not implied in any of the relevant references. It therefore appears that, in addition to
the normalisation by h? instead of bh, as suggested in Section 2.4, there may be scope for
further tuning of the simple model by adjustment of the parameter B.
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APPENDIX 2

Brishton's Two Layer Model (from Brighton, 1986

See Figure 3.1 for schematic diagram.
Flux Conservation Equations
Q+F, +Fy, =Fy+F, Q + CyFy. = C(Fy + F)

Fau + Fiy = Fy + Fy, C.Fy = Cy(Fy + Fy)

Specification of Fluxes

F, =0
Fiy = Fy. = ¢4, /Ri if Ri = Rip
Fiy = Fy = ayh, if Ri < Ri;g

Ri = (C, - Cy)g' WU

Ri; = afay,

F.o=v h, withy =y, + '\!ZB”3
F,y = 0.5(h/D** Ry for I/hy > 0.3, = 0.7h, otherwise
ﬁL = Q/Y

Note h, and h, are normalised (h,/h etc), so thath, = 1 - b,
Solution for Ri < Ri;

(emry + 0.7 hy) Q @yt Cy
CL = b) CU =

0.7 hy ey, + Qeyh, + 0.7 hy) aph, + 0.7 hy

Solution for Ri > Ri;
C.=1-eaA,/B

Cy

aA,/(0.7 hy Riy) where Ri, = g’ h/U?
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3.22
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Some of Brighton's results (his Figure 4) are reproduced here, in order to facilitate comparison
with the results obtained in this study, and presented in Figure 3.2
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Figure.4 Measurements of Ground-Level Concentrations for Heavy-Gas Release in the Wake
of A 3D Obstacle. Open Symbols at x=h Closed at x = 2h
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Fackrell's basic model.
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A = [b cos(@) + | sin(8)] h
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Figure 2.5 Wake Concentration Using Simple Model

Modification to Fackrell's basic model.
Effective wake area given by:

A = b cos(8) +1sin(8)] b when b cos(8) +1sin(8) <h
A=k when b cos(8) + | sin(8) > h
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Figure 2.6 Wake Concentration Using Modified Model
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