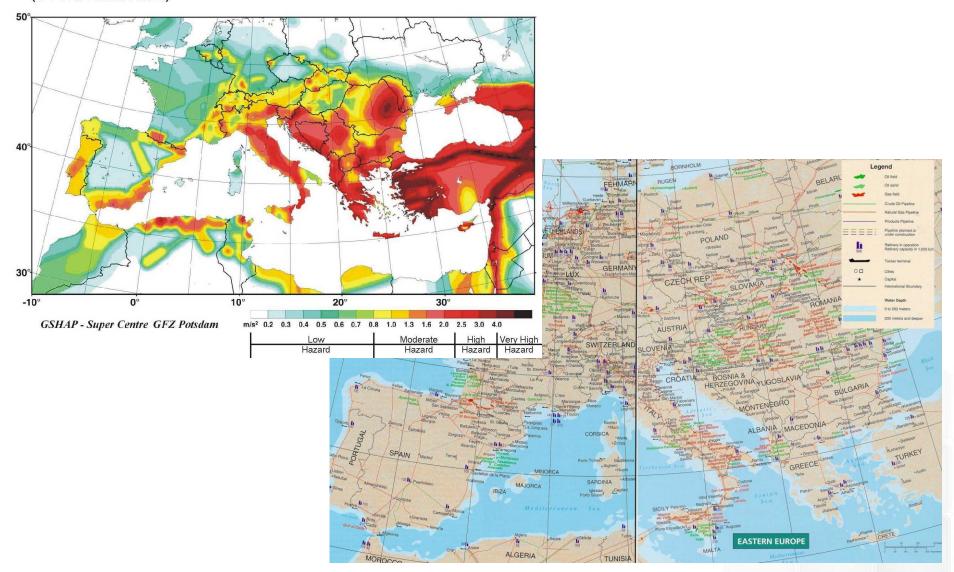


L'ISOLAMENTO SISMICO APPLICATO AGLI IMPIANTI CHIMICI E PETROLCHIMICI

Alessandro Poggianti - Ricercatore ENEA

Seminario ENEA-GLIS


LA SICUREZZA SISMICA DEGLI IMPIANTI INDUSTRIALI

22 Ottobre 2010, ENEA, Lungotevere Thaon di Revel, 76 - Roma

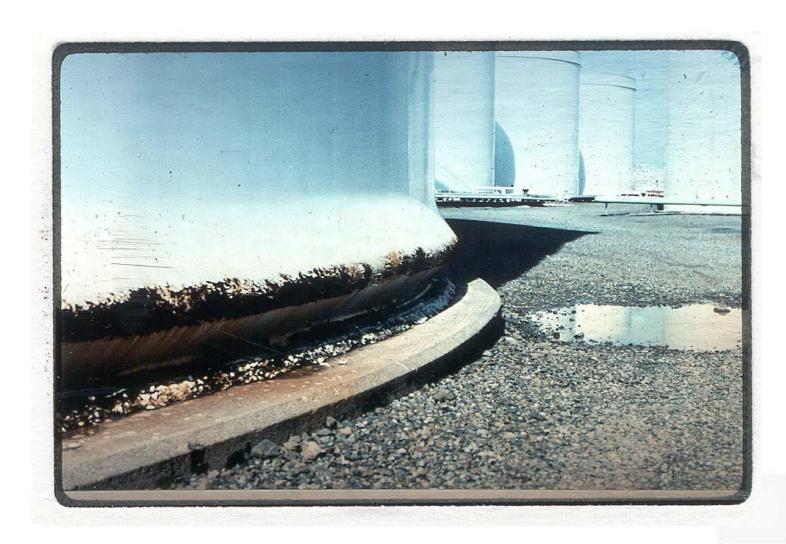
Rischio Sismico in Europa

Peak Horizontal Acceleration Map 10% Probability of Exceedance in 50 Years (475 Year Return Period)

- Nonostante la criticità degli impianti chimici e petrolchimici, l'isolamento sismico e la dissipazione di energia sono raramente considerati nel progetto.
- Poche applicazioni dell'isolamento sismico sono state realizzate in questo tipo di impianti e quasi esclusivamente su serbatoi LNG.

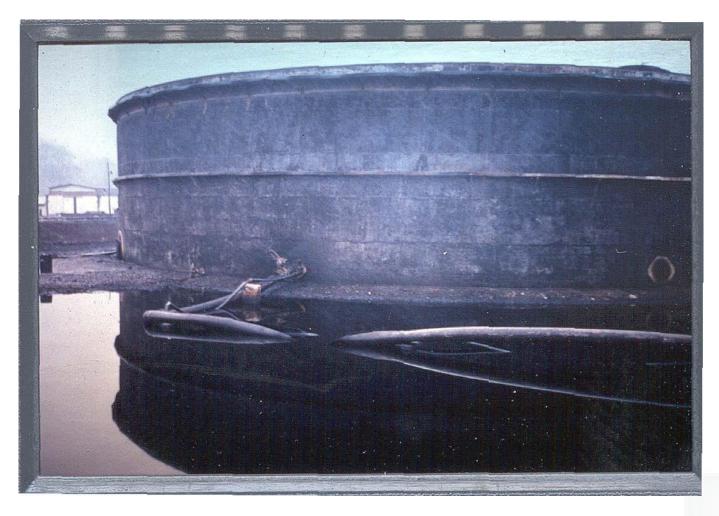
Rischi potenziali

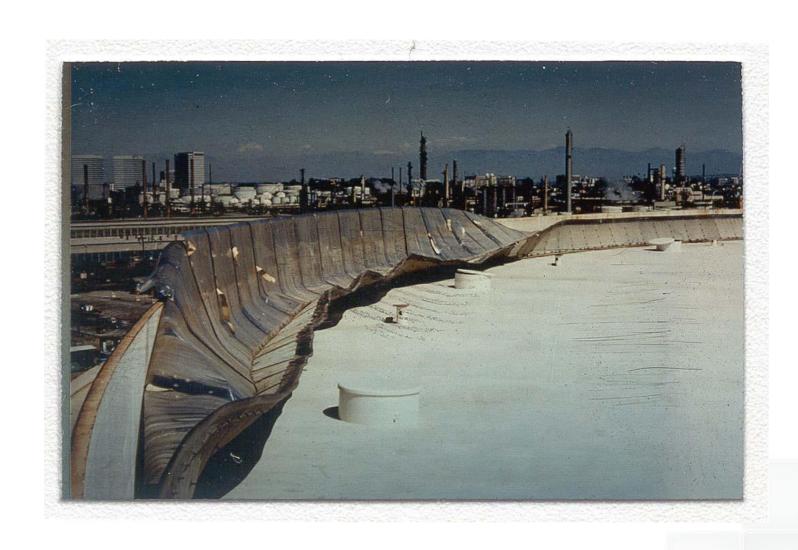
- Ambiente; rilascio di materiali pericolosi.
- Incendio; contenuti altamente infiammabili.
- <u>Danni economici</u>; interruzione della produzione.
- <u>Sicurezza</u>; del personale e della popolazione adiacente all'impianto.
- <u>Interventi post-terremoto</u>; spegnimento incendi, bonifica materiali tossici.


Tupras Refinery, Izmit Turkey (1999), incendio

Elephant's Foot Buckling Loma Prieta

Vincoli eccessivi tubazioni – Landers, 1992


Ribaltamenti – Recope Refinery, Costa Rica


Perdita di liquidi – Costa Rica

Danneggiamento tetto flottante Landers 1992

Valutazione dell'applicabilità dell'Isolamento Sismico alla protezione sismica di componenti di Impianti industriali (ISI)

Contratto CNR N. 00.00633.PF37

Partecipanti:

ANPA (ora ISPRA)

Università di Roma la Sapienza

ENEA

Inizio attività: 1999

Fine attività: metà 2002

Identificazione di un componente tipico

Diametro 20m - Volume interno 5000 m³

Modello ad Elementi Finiti dettagliato del serbatoio implementato nel codice ABAQUS

DEFINIZIONE DEL MOTO VIBRATORIO DI PROGETTO

Time history artificiale PGA = 0.4 g

SISTEMI DI ISOLAMENTO SISMICO ANALIZZATI

11 HDRB, Φ 800 mm, H 100 mm

11 HDRB, Φ 700 mm, H 150 mm

5 HDRB, Φ 700 mm, H 150 mm + 6 SDs

3 HDRB, Φ 700 mm, H 150 mm + 8 SDs

CONDIZIONI DI CARICO PREVISTE

Vuoto

Pieno 50%

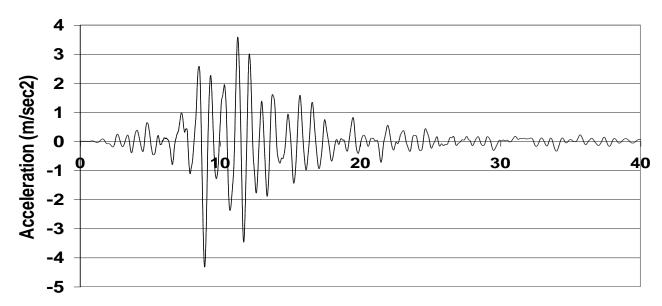
Pieno 80%

Pieno 100%

Effetto di "Sloshing"

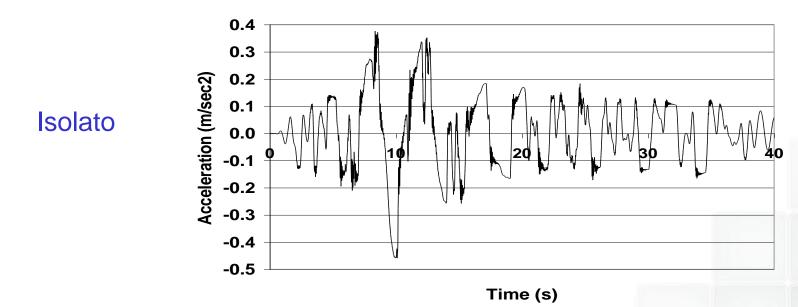
Scelta del sistema di isolamento sismico e sua progettazione dettagliata

3 HDRB + 8 SDs


HDRB

- Diametro 700 mm
- Altezza della gomma 140 mm
- Spostamento longitudinale massimo 200 mm
- Modulo di elasticità tangenziale 0.8 MPa
- Rigidezza tangenziale 2200 N/mm

APPOGGI SCORREVOLI ACCIAIO TEFLON


Spostamento laterale massimo 200 mm

Non isolato

Time (s)

Riempimento	80%	50%	Vuoto
Periodo (s)	3.00	2.24	1.00
Forza di Taglio (kN)	2900	2250	1000
Spostamento (m)	0.243	0.181	0.080

Riempimento	80%	40%	Vuoto
Periodo (s)	1.45	1.09	0.50
Forza di Taglio (kN)	1195	1080	961
Spostamento (m)	0.144	0.061	0.041

	Total Shear	Force (kN)	Displacement (mm)		
	Full	Empty	Full	Empty	
Fixed Base	14400	3890	90	32	
Mixed	1260	470	187	71	
11 EP	1195	961	144	41	

Titolo: Development of INnovative DEvices for Seismic Protection of PeTrocHemical Facilities

Acronimo: INDEPTH

Durata: 36 mesi

Data di Inizio: 1 Settembre, 2002

Finanziamento della Commissione Europea

FIP Industriale S.p.A.
CESI S.p.A. Divisione ISMES
Principia
ENEA - Bologna
MMI Engineering
Università di Vienna
Università di Patrasso
IWKA

Obiettivi del progetto

- Sviluppare dispositivi di isolamento sismico e dissipazione di energia efficaci ed economicamente convenienti per :
 - Serbatoi cilindrici a tetto fisso (prodotti/acqua anti-icendio)
 - Serbatoi LNG (Gas Naturale Liquefatto)
 - Sfere
- Sviluppare giunti flessibili per tubazioni in grado di assorbire gli spostamenti relativi.
- Fornire guide per il progetto sismico di strutture nuove od esistenti.

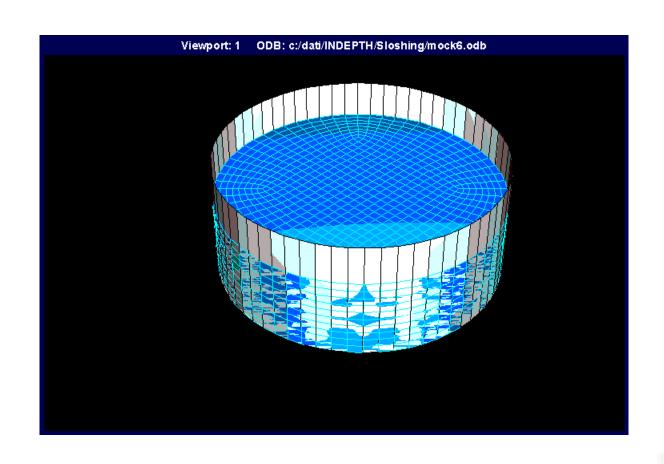
Serbatoi cilindrici selezionati

Tank P8803 66.4m diameter H/D = 0.29 Atmospheric Residue

Tank T729, 8.2m dia., H/D = 1.75, Lube Oil

Tank P5151, 24.0m dia., H/D = 0.75, Demin. Water

Tecnologie selezionate


Technology	Shear modulus, G [MPa]	Thickness [m]	Main advantages	Main drawbacks
Polymeric foams (PF)	< 0,1	0.3 m	Lower costs, could be easy combined with carbon fibers, no additional foundation requirements	Creep effect
Rubber bearing (RB)	< 0,5	0.3 m	High energy dissipation, low displacements, well consolidated technology, possibility of overall stiffness adaptation through modification of the array characteristics	High manufacturing costs, could request additional stiffening of the bottom and an anchoring devices
Fiber Reinforced Rubber Bearing (FRRB)	<0,5	0.3 m	High energy dissipation, low displacements, reduce manufacturing costs, (compared with the traditional steel reinforcement)	could request additional stiffening of the bottom and an anchoring devices

Tank	Max "a" horiz./ Pga	Max displ. [m]	Sloshing freq. [Hz]	Static pressure [Pa]	Dynamic vertical pressure [Pa]	Vertical force [N/m]	Selected technology
Tank P 8803	0,6	0,099	0,10	21549	26154	53456	PF: thickness 30 cm, G<0,1 MPa, D= 5%, strips
Tank P 5151	0,6	0,099	0,19	21581	23068	32898	(PF+RB) PF: 30 cm, G<0,1 MPa, D=5%, strips, FRRB: discrete rubber bearings (0,3 m diam.) placed on the border
Tank P 729	0,6	0,099	0,33	123199	131812	60957	(RB+FRRB) FRRB: discrete rubber bearings (0,3 m diam.) placed on the border

Sloshing

Nuove applicazioni

Tra il 2005 ed il 2008 la **Polimeri Europa** del gruppo ENI ha provveduto all'adeguamento sismico con isolamento dei seguenti serbatoi:

- > serbatoio di propilene criogenico DA 1420 Rep. SG14
- >serbatoio di etilene criogenico DA 1125 Rep. SG11
- >serbatoio di etilene criogenico DA 1135 Rep. SG11

Si sono adottati dispositivi di isolamento sismico (prodotti dalla Earthquake Protection System Inc. E.P.S. nello stabilimento di Vallejo, California, USA) del tipo a pendolo ad attrito, istallati alla sommità dei pilastri di sostegno della piastra di base del serbatoio.

Il progetto è stato redatto dall'Ing. Andrea Santangelo ai sensi dell'O.P.C.M.3274 e 3431 ed è stato approvato dall'Ufficio del Genio Civile di Siracusa.

Courtesy of Prof. Ing. Nunzio Scibilia

Serbatoio in cemento appoggiato su colonne in c.a.

Dimensioni serbatoio:R = 11.43 m, H = 28.83 m

Peso serbatoio: $P_S = 2256 \text{ kN}$

Peso specifico del liquido: $\gamma = 0.606 \text{ kgdm}^{-3}$

Volume serbatoio: $V = 9400 \text{ m}^3$

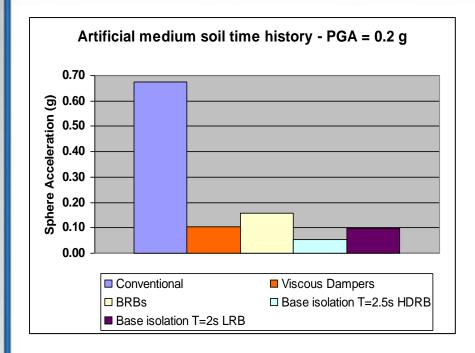

Altezza liquido: H = 22.9 m

Peso Liquido: $P_g = 57000 \text{ kN}$

Peso strutture in c.a.: P_{tot}=10440 kN


Sfera selezionata – P9102

19.6m diameter 4,200 m³ capacity polypropylene


<u>Problema</u>: insufficiente resistenza ai carichi orizzontali del sistema di controventi: snervamento in tensione a 0.13g, buckling in compressione, collasso 0.2 – 0.25g

Soluzione:

Retrofit: sostituzione con controventi dissipativi elasto-plastici o viscosi

Nuovi: isolamento alla base

SHAKING TABLE TESTS

- Diametro 3500 mm
- Massa totale ≈ 24000 kg
- Altezza centro sfera 2500 mm
- Periodo proprio uguale alla sfera reale

Serbatoi LNG

100,000m3

60,000m3

Huelva Refinery

Tre diversi sistemi di isolamento studiati

 High-Damping Rubber Bearings: Linear model, i.e. spring + linear dashpot (LIN)
 Hysteretic model (HDRB)

2) Lead Rubber Bearings: Elasto-plastic model (LRB)

3) Non linear Viscous Dampers + Low-damping Rubber Bearings:
Viscoelastic non linear model (VE)

Risultati dello studio sugli LNG

Per un serbatoio non isolato, quando la PGA raggiunge:

- 0.25 0.30g c'è il sollevamento del bordo se non ci sono ancoraggi;
- 0.40 0.50g inizia a scivolare se non ci sono ancoraggi;
- Attorno a 1g inizia il sollevamento globale del serbatoio interno.

Per un serbatoio isolato, quando la PGA raggiunge:

- 0.80 0.90g inizia a scivolare se non ci sono ancoraggi;
- Attorno a 1g inizia il sollevamento globale del serbatoio interno.

Riassumendo, quando la PGA raggiunge:


- 0.25 0.30g il serbatoio può essere costruito isolato o non isolato;
- Da 0.25 0.30 a 0.40 0.50g un serbatoio non isolato deve essere ancorato mentre un serbatoio isolato può essere realizzato senza ancoraggi;
- Da 0.40 0.50 a 0.80 0.90g solo un serbatoio isolato può essere realizzato e deve essere ancorato;
- Oltre circa 0.90g un serbatoio LNG non può essere realizzato con gli attuali standard e metodologie in quanto anche una struttura isolata comincia ad avere scivolamenti importanti.

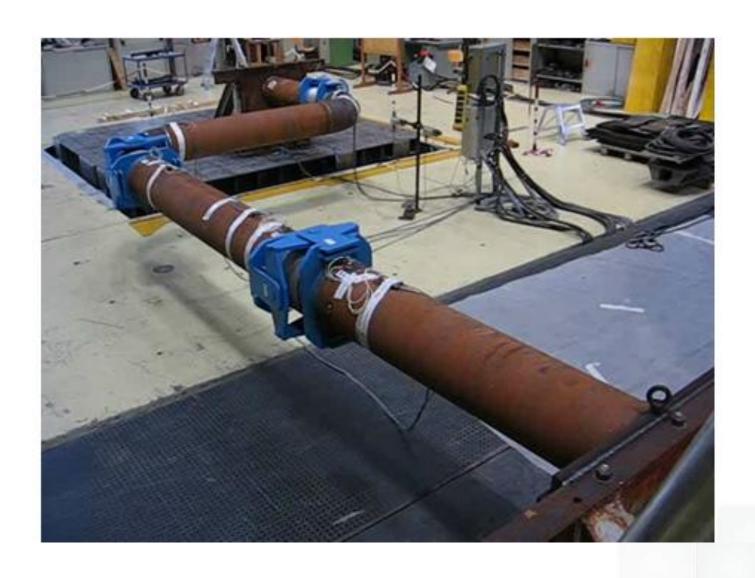
Applicazioni dell'isolamento sismico a serbatoi LNG

- Revithoussa LNG terminal, Grecia, 2 serbatoi di capacità 65,000 m³ ciascuno.
- Inchon LNG receiving terminal, South Korea, 3 serbatoi di capacità 100,000 m³ ciascuno.
- Pyeong-Take LNG terminal, South Korea, 10 serbatoi a membrana.
- Marmara Eriflisi tanks, Turkey, 3 serbatoi di capacità 85,000 m³ ciascuno.

Applicazioni in corso dell'isolamento sismico a serbatoi LNG - Perù

GIUNTI FLESSIBILI

3 PIN – Z – System


Questi giunti sono in grado di assorbire spostamenti relativi di decine di centimetri

3 PIN - U - System

SHAKING TABLE TESTS

GRAZIE PER L'ATTENZIONE

alessandro.poggianti@enea.it